您好,欢迎访问新航道官网托福频道!

在线咨询

托福 (TOEFL)

奏响中国托福培训最强音

2018新航道秋季班

您当前的位置 » 新航道官网 » 托福 » 托福阅读 » 文章正文

托福阅读材料之适应沙漠的植物

2013-08-07 16:29     供稿单位: 新航道    

出国英语考试有哪些 雅思6.5是什么水平 雅思阅读评分标准 托福阅读评分标准 雅思和托福的区别

 Cactus adaptations.

  The secret to the superior endurance of cacti lies in their adaptations. Over millions of years, through natural selection, only the strongest and best adapted species survived.

  As you know, it is very dry in the desert. Plants that adapt to this are known as xerophytes (from xeros, dry and phyton, plant). There are plants that avoid the dry season by sprouting from seed just after the spring rain and growing very fast so that by the time the dry season comes, they have already produced a lot of seeds and died. These seeds lie on the soil for the dry season and sprout again in spring and the cycle repeats. Other xerophytes simply drop their leaves and stay dormant for the winter. But there is another special type of xerophyte which stores water in its fleshy tissues. Such plants are called succulents (from succus, juicy). The cactus is a typical example of a succulent.

  If you cut a cactus open, you see a juicy, slimy tissue. This is where the moisture is stored for the dry season. The part between the middle circle (or pith) and just under the very green part of the plant (or palisade parenchyma) just under the skin is allocated for the storage of water and food for the plant. This is a type of spongy parenchyma and can take up up to 85% of the plant's volume. This is a major adaptation in the desert. Because the plant remains completely alive during the dry season and there is no need for it to dry up and lose everything, makes it possible for the plant to grow to large sizes. Another advantage is that the plant retains supplies (in the form of starch) for the winter so that it can flower right away in spring without accumulating more supplies (as most plants need to do in spring). The whole purpose of storing supplies for the winter is mostly to energize flowering in spring but it also lets the cactus start growing much sooner.

  Flowering plants breathe and transpire (evaporate water from their surface) through closeable microscopic pores called stomates on the leaves or stems. To do this, their pores have to be open. In most plants these are open all day and on warm nights. But for cacti this is inconvenient as in daytime it is very hot and thus the plant would lose a lot of water through evaporation. So the cactus must close them in the daytime. But then it cannot breathe or photosynthesize (the process where sugars are made from carbon dioxide and water and releasing oxygen using the sun's energy). Succulents have an adaptation to that. Their stomates are closed during the day and are open at night, when it is not that hot and store carbon dioxide in its tissues as crassulean acid and then turn it back to carbon dioxide in the daytime. This process is called crassulean acid metabolism or CAM and it is a very smart way of respiring in the desert.

  If we look at the outside of the plant, we notice that there is a tough leathery skin covering the plant, we can also notice the presence of ribs and spines and sometimes fur. These are all very smart adaptations. They serve mainly for surviving heat but are also used as defense.

  The tough leathery skin is very impermeable to water, thus reducing evaporation from the surface of the plant. This skin often has a layer of plant wax on it which is often lightly coloured (Pilosocereus azures is an example of a plant with such wax), white or blue. This reflects light and also reduces evaporation from the inside.

  The ribs are special structures that are also used for enduring extreme heat. The ribs (and spines) trap wind so that the plant is enveloped in a layer of extremely still air, and this is a very important factor in reducing evaporation. On a very windy days even the ribs don't help and cacti sometimes wilt because of high water loss.

  The spines have different functions. They not only help shade the plant from the sun but are also known to help the cactus absorb water. They do it like this. On cool nights, dew settles on the spines of the plant. The spines are actually known to draw droplets of water towards the areole (the point out of which the spines grow) and here the droplets are absorbed. You can try this at home. Spray the plants with a very fine mist of water and watch what happens to the droplets that settle on the spines. They literally get attracted to the areole along the spine. The spine's structure allows them to do this. Even spines pointing downwards seem to suck the droplets up themselves.

  Adaptation features are visible in this Pilosocereus glauchochorous. Notice the spines, ribs, fur and wax (the blue coloration). The top of a typically adapted plant.

  Some plants have fur, sometimes all over the plant, sometimes only near the top. This fur shades the plant even further and is also known to attract water towards the areole. Some plants only have fur near the top. This is very beneficial because the top of the plant is very sensitive to sunlight, new tissues get formed there. Young areoles, with their spines not even wooded yet can get dried up completely in the sun. When an areole is born near the top of the plant, it starts developing spines. At this time the fur appears as well. This fur accompanies the areole as it moves down the plant, shading the growing point inside. By the time the areole is about 15cm away from the top, the fur wears out completely and the now inactive areole gets exposed to the sun.

  As for the roots of cacti, they are also fully adapted to living in the desert. Some species (especially plants from very dry deserts) have very shallow root systems that spread very far from the plant. This way the plant can take advantage of tiny amounts of moisture from dew or light rain as the roots spread far away and are very shallow (less than 10cm deep while spreading up to 5 metres from the parent plant). On the other hand, some cacti send their roots deep down (like many Echinocacti) to reach the ground water.

  Rainforest cacti often have aerial roots that can collect water all the time when it rains (and it rains very often in South American forests).

  The shape of cacti itself is an adaptation. You may have noticed that cacti have a barrel like or candle like shape. This allows for maximum internal volume with a minimum surface area, which is also very smart adaption as a cactus can store a lot of water and have a small external surface area to reduce water loss.

 以上就是新航道托福频道为大家整理的托福阅读材料之适应沙漠的植物,希望对大家有帮助,更多资讯、资料请访问新航道托福阅读频道 https://www.xhd.cn/toefl/yuedu/


分享到:
新航道,英语成功之道。时间获取新航道英语学习资料和新鲜资讯,请在微信公众账号中搜索「新航道英语」或者「xhdenglish」,或用手机扫描左方二维码,即可获得新航道每日精华内容推送和英语学习经验分享,并参与新航道举办的各项活动。
责编:李术