全国校区

报名咨询热线:400-779-6688

集团客服热线:400-097-9266

首页 新首页 资讯中心 雅思 托福 SAT 考研 Alevel ACT GRE 新课程中心 课程中心 广告管理 教师中心

首页 > a-level资讯 > A-Level数学 > A-Level数学篇:如何选择分部积分中的u&v

A-Level数学篇:如何选择分部积分中的u&v

2022-03-09 10:48     作者 :    

阅读量:

  积分在P4中是很多学生冲击高分的拦路虎,那其中最为头疼的就是分部积分了。分部积分是用于解决乘积形式函数的积分,最关键性的一步就是如何选择u&v。

  对于u&v的选取需要满足两个基本要求:

  1. v要容易求出;

  2. ∫v du要比∫u dv容易求出。

  那接下来我们就进一步探讨u的选择顺序并分析一些常见的问题和考点。

  Find ∫xcosx dx

  如若:令u=cosx dv/du=x

  根据分步积分公式:

  ∫xcosx dx= cosx+∫sinx dx

  可以看出,积分更难进行,依然无法得到结果,所以u,v选择不恰当。

  正确思路应该是:

  Find ∫xcosx dx

  let u=x → du/dx=1

  dv/dx=cosx → v=sinx

  using the integration by parts formula:

  ∫xcosx dx=xsinx - ∫sinx dx= xsinx + cosx + c

  小结:如若被积函数是幂函数乘正余弦函数,那就令幂函数为u,使其降幂一次。

  然而在考试当中,一定不会只有以上这一种分步积分的考察式,

  其他如:Find ∫x2ex dx,∫x2 lnx dx, ∫exsinx dx

  那我们又应该如何来选择u呢?

  这里送给大家一个小口诀方便记忆:“反对幂三指”

  意思是对于乘积形式函数的积分,u的优先选择顺序应该是:反三角函数,对数函数,幂函数,三角函数,指数函数,简称为“反对幂三指”。

  所以 ∫x2ex dx,∫x2 lnx dx, ∫exsinx dx中的u分别对应的就应该是x2,lnx,sinx。

  我们再一起来总结一下今天的学习,对于乘积形式的函数进行积分,做题准则是使用合适的分部u,更好的使函数容易积分,一个好的分部,是积分成功的前提,当然最重要的u的选取小秘诀“反对幂三指”也要烂熟于心哦!


相关文章 查看更多

雅思备考工具箱

热门活动 更多

热门课程 更多